E=BOOK number system CONCEPT

A TOP RANKERS Initiative

SuperGrads Study Material

Part of the most Comprehensive Classroom Training, Prep Content \mathcal{E} Test Series across the Nation.

QUANTITATIVE ABILITY

supergrâds

NUMBER SYSTEM

- Number Systems is the most important topic in the quantitative section.
- It is a very vast topic and a significant number of questions appear in CAT every year from this section.
- Learning simple tricks like divisibility rules, HCF and LCM, prime number and remainder theorems can help improve the score drastically.
- This document presents best short cuts which makes this topic easy and helps you perform better.

Concept 01

HCF and LCM

- HCF * LCM of two numbers = Product of two numbers
- The greatest number dividing a, b and c leaving remainders of x_{1}, x_{2} and x_{3} is the HCF of $\left(a-x_{1}\right),\left(b-x_{2}\right)$ and (c $-x_{3}$).
- The greatest number dividing a, b and $\mathrm{c}(\mathrm{a}<\mathrm{b}<\mathrm{c})$ leaving the same remainder each time is the HCF of ($\mathrm{c}-\mathrm{b}$), (c-a), (b-a).
- If a number, N, is divisible by X and Y and $\operatorname{HCF}(X, Y)=1$. Then, N is divisible by $X^{\star} Y$

Concept 02

Prime and Composite Numbers

- Prime numbers are numbers with only two factors, 1 and the number itself.
- Composite numbers are numbers with more than 2 factors.

Examples are 4, 6, $8,9$.

- 0 and 1 are neither composite nor prime.
- There are 25 prime numbers less than 100

Concept 03

Properties of Prime numbers

- To check if n is a prime number, list all prime factors less than or equal to $\sqrt{ } \mathrm{n}$. If none of the prime factors can divide n then n is a prime number.
- For any integer a and prime number $p, a^{p}-a$ is always divisible by p
- All prime numbers greater than 2 and 3 can be written in the form of $6 k+1$ or $6 k-1$
- If a and b are co-prime then $a\left({ }^{(b-1)} \bmod b=1\right.$.

Concept 04

Theorems on Prime numbers

Fermat's Theorem:
Remainder of $a^{(p-1)}$ when divided by p is 1 , where p is a prime

Wilson's Theorem:

Remainder when ($p-1$)! Is divided by p is $(p-1)$ where p is a prime

Theorems on Prime numbers

Remainder Theorem

- If a, b, c are the prime factors of N such that $N=a^{p} b^{q}$ * c^{r}

A TOP RANKERS Initiative
Then the number of numbers less than N and co-prime to N is
$\left.\phi(N)=N\left(1-\frac{1}{a}\right)\right)\left(1-\frac{1}{b}\right)\left(1-\frac{1}{c}\right)$.
This function is known as the Euler's totient function.

Euler's theorem

- If M and N are co-prime to each other then remainder when $\mathrm{M}^{\phi(\mathrm{N})}$ is divided by N is 1 .

Concept 05

- Highest power of n in $\mathrm{m}!$ is $\left[\frac{m}{n}\right]+\left[\frac{m}{n^{2}}\right]+\left[\frac{m}{n^{2}}\right]+\ldots$. .

Ex: Highest power of 7 in $100!=\left[\frac{100}{7}\right]+\left[\frac{100}{49}\right]=16$

- To find the number of zeroes in n ! find the highest power of 5 in n !
- If all possible permutations of n distinct digits are added together the sum $=(n-1)!$ * (sum of n digits) * (11111... n times)

Concept 06

- If the number can be represented as $N=a^{p} * b^{q} * c^{r}$. . . then number of factors the is $(p+1)^{*}(q+1) *(r+1)$
- Sum of the factors $=\frac{a^{p+1}-1}{a-1} \times \frac{b^{q+1}-1}{b-1} \times \frac{c^{r+1}-1}{c-1}$
- If the number of factors are odd then N is a perfect square.
- If there are n factors, then the number of pairs of factors would be $\frac{n}{2}$. If N is a perfect square then number of pairs (including the square root) is $\frac{(n+1)}{2}$

If the number can be expressed as $N=2^{p} * a^{q} * b^{r} \ldots$ where the power of 2 is p and a, b are prime numbers

- Then the number of even factors of $N=p(1+q)(1+r) \ldots$
- The number of odd factors of $\mathrm{N}=(1+\mathrm{q})(1+\mathrm{r}) \ldots$

Concept 07

Number of positive integral solutions of the equation $x^{2}-y^{2}=k$ is given by

- Total number of factors of k (If k is odd but not a perfect square)
- $\frac{\text { (Total number of factors of } k \text {) }-1}{2}$ (If k is odd and a perfect square)
- Total number of factors of $\frac{\mathrm{k}}{4}$ (If k is even and not a perfect square)
- (Total number of factors of $\frac{\mathrm{K}}{4}$)-1 \quad (If it is even and a perfect square)

Concept 08

- Number of digits in $a b=\left[b \log _{m}(a)\right]+1$; where m is the base of the number and [.] denotes greatest integer function
- Even number which is not a multiple of 4 , can never be expressed as a difference of 2 perfect squares.
- Sum of first n odd numbers is n^{2}
- Sum of first n even numbers is $\mathrm{n}(\mathrm{n}+1)$
- The product of the factors of N is given by $N^{\frac{a}{2}}$, where a is the number of factors

Concept 09

- The last two digits of $\mathrm{a}^{2},(50-\mathrm{a})^{2},(50+\mathrm{a})^{2},(100-\mathrm{a})^{2}$ are same.
- If the number is written as $210 n$

When n is odd, the last 2 digits are 24 .
When n is even, the last 2 digits are 76 .

Concept 10

Divisibility

- Divisibility by 2 : Last digit divisible by 2
- Divisibility by 4: Last two digits divisible by 4
- Divisibility by 8 : Last three digits divisible by 8
- Divisibility by 16 : Last four digit divisible by 16

A TOP RANKERS Initiative

Divisibility

- Divisibility by 3: Sum of digits divisible by 3
- Divisibility by 9: Sum of digits divisible by 9
- Divisibility by 27: Sum of blocks of 3 (taken right to left) divisible by 27
- Divisibility by 7: Remove the last digit, double it and subtract it from the truncated original number. Check if number is divisible by 7
- Divisibility by 11: (sum of odd digits) - (sum of even digits) should be 0 or divisible by 11

Concept 11

Divisibility properties

- For composite divisors, check if the number is divisible by the factors individually. Hence to check if a number is divisible by 6 it must be divisible by 2 and 3 .
- The equation $a^{n}-b^{n}$ is always divisible by $a-b$. If n is even it is divisible by $a+b$. If n is odd it is not divisible by $\mathrm{a}+\mathrm{b}$.
- The equation $a^{n}+b^{n}$, is divisible by $a+b$ if n is odd. If n is even it is not divisible $b y a+b$.
- Converting from decimal to base b. Let $R_{1}, R_{2} \ldots$ be the remainders left after repeatedly dividing the number with b. Hence, the number in base b is given by ... $R_{2} R_{1}$.
- Converting from base b to decimal - multiply each digit of the number with a power of b starting with the rightmost digit and b^{0}.
- A decimal number is divisible by $b-1$ only if the sum of the digits of the number when written in base b are divisible by $b-1$.

Concept 12

Cyclicity

- To find the last digit of an find the cyclicity of a. For Ex. if $a=2$, we see that
- $2^{1}=2$
- $2^{2}=4$
- $2^{3}=8$
- $2^{4}=16$
- $2^{5}=32$

Hence, the last digit of 2 repeats after every $4^{\text {th }}$ power. Hence cyclicity of $2=4$. Hence if we have to find the last digit of a^{n},

The steps are:

1. Find the cyclicity of a, say it is x
2. Find the remainder when n is divided by x, say remainder r
3. Find a^{r} if $r>0$ and a^{x} when $r=0$

Concept 13

- $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
- $\quad(a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right)$
- $(a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right)$
- $\quad(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
- $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $\quad\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$
- $\left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right)$
- When $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$.

