$\begin{aligned} & R_{2} \\ & R_{1}\end{aligned}-\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$g=R_{1}+R_{2}-R_{1}-R_{2}$

$$
\arccos (x)
$$

$$
\frac{E_{1}}{E_{2}}=10^{a v\left(m_{2}-m_{n}\right)} \cdot\left|\frac{r_{2}}{r_{1}}\right|^{2}
$$

\square 1 m

Fsics x
 Pepght $\frac{1}{2 v_{2}}$ ant

$$
\left\{\begin{array}{l}
p V=\frac{m}{M} R T \quad y=\vec{Y} \\
A=\Delta E \quad m, \vec{v}_{1}+m_{2} \vec{v}_{2}=l
\end{array}\right.
$$

$$
\left.\begin{array}{lll}
e=0 & e<1 & e=1 \\
\oint \vec{B} d \mathrm{dL}=\mu_{0} I & 0 & B
\end{array}\right\}
$$

$$
\frac{\partial s}{U I_{t}}-U \rightarrow \omega=\frac{s}{R}
$$

${ }_{c} \mathrm{PNP} \quad P=\frac{U^{2}}{R} \quad L=4$.

E-BOORK
 ALGEBRA

supergrads
 A T@P RANKERS Initiative

SuperGrads Study Material

Part of the most Comprehensive Classroom Training, Prep Content \mathcal{E} Test Series across the Nation.

QUANTITATIVE ABILITY

supergrâds

ELEMENTARY ALGEBRA

Properties of surds:

$[\sqrt[n]{a}]^{\mathrm{n}}=\mathrm{a}$.
$\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$.
$\sqrt[n]{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}$.

Laws of Indices:

If a and b are non-zero rational numbers and m and n are rational numbers then,
$\mathrm{a}^{0}=1$.
$\mathrm{a}^{-\mathrm{m}}=\frac{1}{\mathrm{a}^{\mathrm{m}}}$.
$\sqrt[m]{a}=a^{\left(\frac{1}{m}\right)}$.
$a^{m / n}=\sqrt[n]{a^{m}}$.
$a^{m} \times a^{n}=a^{m+n}$.
$a^{m} \div a^{n}=a^{m-n}$.
$\left(a^{m}\right)^{n}=a^{m n}$
$(a b)^{m}=a^{m} b^{m}$.
$\mathrm{a}^{\mathrm{m}^{\mathrm{n}}}=\mathrm{a}^{\left(\mathrm{m}^{\mathrm{n}}\right)}=$ a raised to the power (m raised to the power n).
If $a^{m}=a^{n}$, then $m=n$.
If $a^{m}=b^{m}$ and $m \neq 0$, then $a=b$ if m is odd and $a= \pm b$ if m is even.
Laws of Logarithms:
$\checkmark \quad \log _{b} 1=0$
$\checkmark \quad \log _{a} a=1$.
$\checkmark \log _{a} b \times \log _{b} a=1$
$\checkmark \quad \log _{\mathrm{b}}(m \times n)=\log _{\mathrm{b}} m+\log _{\mathrm{b}} \mathrm{n}$.
$\checkmark \quad \log _{\llcorner }\left(\frac{m}{n}\right)=\log _{\bullet} m-\log _{\llcorner } n$
$\checkmark \log _{\llcorner } \mathrm{m}^{\mathrm{n}}=\mathrm{nlog}_{\llcorner } \mathrm{m}$.
$\checkmark \log _{b} m=\frac{\log _{a} m}{\log _{a} b}=\log _{a} m \times \log _{b a}$
$\checkmark \quad b^{\log _{b} n}=n$.
\checkmark If $\log _{a} m=\log _{b} n$ and if $m=n$, then a will be equal to b.
\checkmark If $\log _{a} m=\log _{b} n$ and if $a=b$, then m will be equal to n.

Binomial Theorem:

If \boldsymbol{n} is a natural number that is greater than or equal to $\mathbf{2}$, then according to the binomial theorem:
$(x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+{ }^{n} C_{3} x^{n-3} a^{3}+\ldots+{ }^{n} C_{n} x^{0} a^{n}$.
Here, ${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$.

Roots of Quadratic Equation:

The two roots of two quadratic equation, $a x^{2}+b x+c=0$ are given $b y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Algebraic Formula:
$(a+b)(a-b)=a^{2}-b^{2}$.
$(a+b)^{2}=a^{2}+2 a b+b^{2}$.
$(a-b)^{2}=a^{2}-2 a b+b^{2}$.
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$.
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
$(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$.
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$.
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.

PROGRESSION

Arithmetic Progression:

$T_{n}=a+(n-1) d$.
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$.

Geometric Progression:

$T_{n}=a r^{n-1} . \quad S_{n}=\frac{a\left(r^{n}-1\right)}{(r-1)}$.
$S_{\infty}=\frac{a}{1-r}$ for $r<1$.
Harmonic Progression:
$T_{n}=\frac{1}{a+(n-1) d}$

SUM OF IMPORTANT SERIES

Sum of first \mathbf{n} natural numbers:
$1+2+3+4+\ldots+n=\frac{n(n+1)}{2}$.
Sum of the squares of the first \mathbf{n} natural numbers:
$1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Sum of the cubes of the first \mathbf{n} natural numbers:
$1^{3}+2^{3}+3^{3}+4^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

MODERN MATH

Factorial:

$n!=1 \times 2 \times 3 \times \ldots \times(n-1) n$.
$n!=n \times(n-1)!$

Permutations:

${ }^{n} P_{r}=\frac{n!}{(n-r)!}$.

Combinations:

${ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$.

Important Properties:

${ }^{n} C_{r}={ }^{n} C_{n-r}$
${ }^{n} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=2^{\mathrm{n}}$

Partition Rule:

Number of ways of distributing n identical things among r person when each person may get any number of things = $n+r-{ }^{-1} C_{r-1}$.

Probability:

Probability of an event $=\frac{\text { Number of favourable outcomes }}{\text { Number of total outcomes }}$.
Odds in favor $=\frac{\text { Number of favourable outcomes }}{\text { Number of unfavourable outcomes }}$.

Odds against $=\frac{\text { Number of unfavourable outcomes }}{\text { Number of favourable outcomes }}$.

