		Aptitude Test / अ	
1.	Which is best used as a sound absorbing material in partition walls ?		कौनसा पदार्थ ध्वनि-अवशोषण के लिए, विभाजन दीवारों में सबसे ज्यादा प्रयोग में लाया जाता है?
	(1) Glass-wool		(1) काँच की रुई (Glass-wool)
	(2) Glass pieces		(2) काँच के टुकड़े
	(3) Stone chips		(3) पत्थर के टुकड़े
	(4) Steel		(4) स्टील
2.	Interior of any room when painted with wh		किसी कमरे को अंदर से कौन सा रंग करने से, वह बड़ा दिखाई देने लगता है?
	(1) Blue colour		(1) नीला रंग
	(2) Black colour		(2) काला रंग
	(3) White colour		(3) सफेद रंग
	(4) Grey colour		(4) भूरा रंग
3.	Which one of the following is not an architect ?		इनमें से कौन सा वास्तुकार नहीं है?
	(1) B.V. Doshi		(1) बी.वी. दोशी
	(2) Zakir Hussain		(2) ज़ाकिर हुसेन
	(3) Hafiz Contractor	5- ⁻	(3) हाफिज कांट्रेक्टर
	(4) Raj Rewal		(4) राज रेवाल
4.	Howrah Bridge is :	4.	हावड़ा का पुल :
	(1) Resting on concre	ete pillars	(1) कंकरीट के स्तंभों पर टिका है
	(2) Cable hung struc	ture	(2) तारों के गुच्छे से लटका ढाँचा है
	(3) Resting on brick	arches	(3) ईंट की चापों पर टिका हुआ
	(4) A steel structure		(4) एक स्टील का ढाँचा है

5.	The is :	famous work of Leonardo Da Vinci	5.	लियो	नार्डो दा विंसी की प्रसिद्ध काम है :
	(1)	Elizabeth		(1)	एलिजाबेथ
	(2)	Mona Lisa		(2)	मोना लिसा
	(3)	The King		(3)	राजा
	(4)	Cleopatra		(4)	क्लियोपेट्रा
		ch person is famous for the extensive kwork in Kerala ?	6.		में ईंट कार्य में विविधता से काम करने वाला सा व्यक्ति प्रसिद्ध है ?
	(1)	Hafeez Contractor		(1)	हफीज़ कांट्रेक्टर
	(2)	Charles Correa		(2)	चार्ल्स कोरिया
	(3)	Achyut Kanvinde		(3)	अच्युत कानविंदे
	(4)	Laurie Baker		(4)	लॉरी बेकर
	Nala	anda is :	7.	नालंद	श एक :
	(1)	A Temple	0	(1)	मंदिर है
	(2)	Ancient center of higher learning		(2)	पुरातन उच्च अध्ययन का केंद्र है
	(3)	A Fort in Bihar		(3)	बिहार में किला है
	(4)	An ancient town in Sri Lanka		(4)	श्रीलंका में पुरातन शहर है
		ich one of the following is a sound ecting material ?	8.	इनमें	से कौन-सा ध्वनि परिलक्षित पदार्थ है?
	(1)	Wood		(1)	लकड़ी
	(2)	Mirror		(2)	आइना
	(3)	Cotton Cloth		(3)	सूती कपड़ा
	(4)	Woolen cloth		(4)	ऊनी कपड़ा

9.	Eiffel Tower is located in :	9. एपि	फल टॉवर कहाँ स्थित है?
	(1) Australia	(1)) ऑस्ट्रेलिया
	(2) Paris	(2)) पेरिस
	(3) Beijing	(3)) बीजिंग
	(4) London	(4)) लंदन
10.	Shahjahanabad is a part of which one of the following cities ?		हजहाँनाबाद निम्नलिखित शहरों में से किसका एक स्सा है?
	(1) Delhi	(1)) दिल्ली
	(2) Aurangabad	(2)) औरंगाबाद
	(3) Allahabad	(3)) इलाहाबाद
	(4) Lucknow	(4)) लखनऊ
11.	The temple of Angkorvat is in :	11. अंग	ाकोरवाट :
	(1) Vietnam	(1)) वियतनाम में है
	(2) Myanmar	(2)) म्यानमार में है
	(3) Cambodia	(3)) कम्बोडिया में है
	(4) Laos	(4)) लाओस में है
12.	Aswan dam is situated on which river :	12. आ	सवान बाँध किस नदी पर स्थित है?
	(1) Nile River	(1)	नील नदी
	(2) Rhine River	(2)) राईन नदी
	(3) Irrawaddy River	(3)) इरावदी नदी
	(4) Amazon River	(4)) अमेजन नदी

T/Page 4

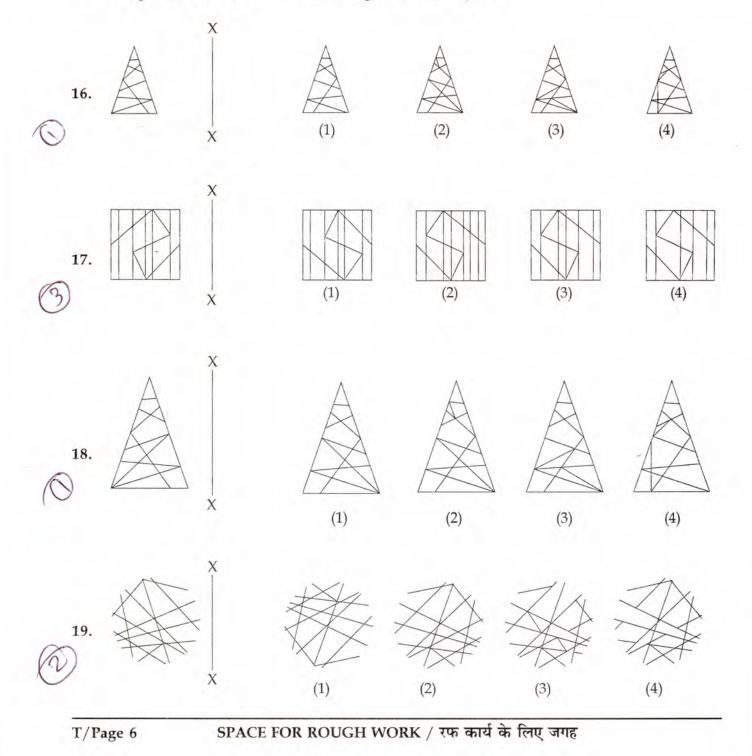
SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

123

3.	Bula	nd Darwaza is located in :	13.	बुलंद	दरवाज़ा कहाँ पर है ?
	(1)	Red Fort		(1)	लाल किले में
	(2)	Agra Fort		(2)	आगरा किले में
	(3)	Golconda		(3)	गोलकुंडा में
	(4)	Fatehpur Sikri		(4)	फतेहपुर सीकरी में
4.		re are maximum forests in which State adia :	14.	भारत	में सबसे अधिक वन किस प्रदेश में है?
	(1)	Karnataka		(1)	कर्नाटका
	(2)	Madhya Pradesh		(2)	मध्य प्रदेश
	(3)	Himachal Pradesh		(3)	हिमाचल प्रदेश
	(4)	Uttar Pradesh		(4)	उत्तर प्रदेश
5.		ich one of the following is an hquake resistant structure ?	15.	निम्नां है?	कित ढाँचों में से कौन सा भूकंप को रुकावट देता
	(1)	RCC framed		(1)	आर.सी.सी. फ्रेम
	(2)	Load bearing brick walled		(2)	भार रोकने वाली ईंट की दीवारें
	(3)	Random stone masonary		(3)	अटकल-पच्चू तरीके से पत्थरों की चिनाई
	(4)	Mud walls		(4)	मिट्टी गारा से बनी दीवारें

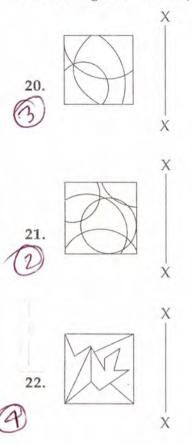
/Page 5

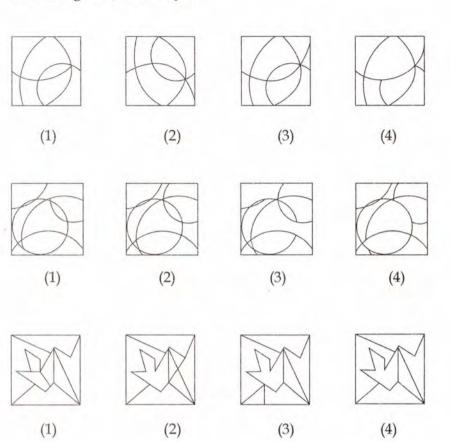
Directions : (For Q. 16 to 22).


निर्देश : (प्र. 16 से 22 के लिए)।

Problem Figure / प्रश्न आकृति

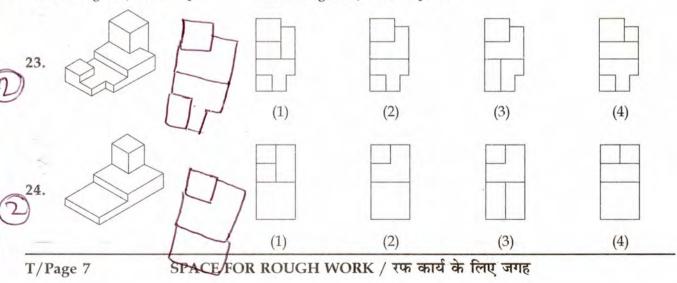
Which one of the answer figures is the correct mirror image of the problem figure with respect to X-X?


उत्तर आकृतियों में से कौन-सी आकृति दी गयी प्रश्न आकृति का X–X से सम्बंधित सही दर्पण प्रतिबिम्ब है?


Answer Figures / उत्तर आकृतियाँ

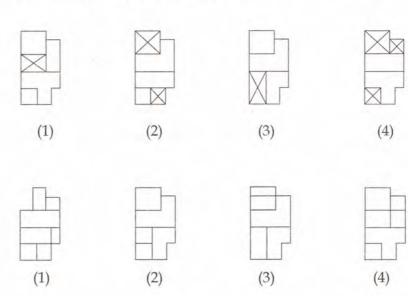
Problem Figure / प्रश्न आकृति

Answer Figures / उत्तर आकृतियाँ


Directions : (For Q. 23 to 26).

निर्देश : (प्र. 23 से 26 के लिए)।

The 3-D problem figure shows the view of an object. Identify the correct top view from amongst the answer figures. 3-D प्रश्न आकृति में एक वस्तु के एक दृश्य को दिखाया गया है। इसका सही ऊपरी दृश्य, उत्तर आकृतियों में से पहचानिये।


Problem Figure / प्रश्न आकृति

Answer Figures / उत्तर आकृतियाँ

Problem Figure / प्रश्न आकृति

25.

Answer Figures / उत्तर आकृतियाँ

Directions : (For Q. 27 and 28).

Identify the correct 3–D figure from amongst the answer figures, which has the same elevation, as given in the problem figure on the left, looking in the direction of the arrow.

निर्देश : (प्र. 27 और 28 के लिए)।

3--D उत्तर आकृतियों में से उस आकृति को पहचानिये जिस का, तीर की दिशा में, सम्मुख दृश्य प्रश्न आकृति से मिलता हो।

Problem Figure / प्रश्न आकृति Answer Figures / उत्तर आकृतियाँ

 $\begin{array}{c}
27. \\
() \\
() \\
() \\
() \\
(2) \\
(3) \\
(4) \\
(4) \\
(1) \\
(2) \\
(3) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(1) \\
(2) \\
(3) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4) \\
(4$

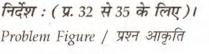
Directions : (For Q. 29 to 31).

The 3–D figure sl of an object. Identify the correct front view from amongst the answer figures, in the direction of the arrow.

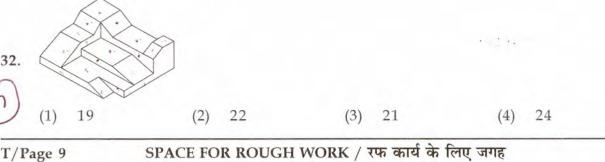
3-D प्रश्न आकृति में एक वस्तु के एक दूश्य को दिखाया गया है। तीर की दिशा

में देखते हुए, इसके सम्मुख दूश्य को उत्तर आकृतियों में से पहचानिये।

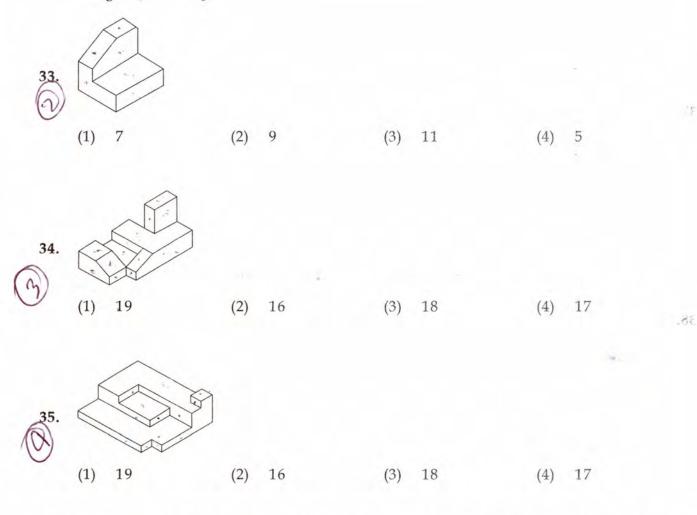
निर्देश : (प्र. 29 से 31 के लिए)।


Problem Figure / प्रश्न आकृति

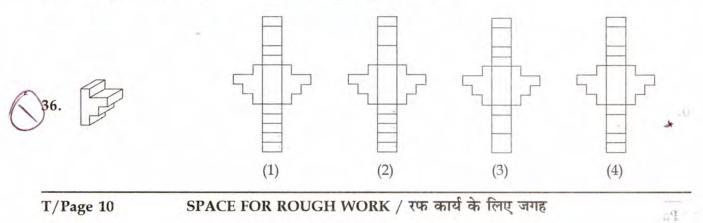
29. 4 (1)(3)(4)(2)30. (1) (2)(3)(4)31. (1)(4)(2)(3)


Answer Figures / उत्तर आकृतियाँ

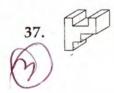
Find the total number of surfaces of the object given below in the problem figure.

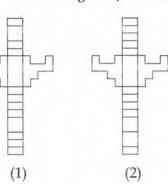

प्रश्न आकृति में निम्नांकित वस्तु में सतहों की कुल संख्या ज्ञात कीजिये।

Directions : (For Q. 32 to 35).



Problem Figure / प्रश्न आकृति



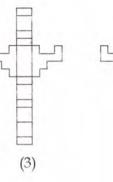

Directions : (For Q. 36 to 40).

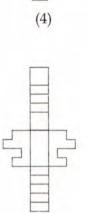
निर्देश : (प्र. 36 से 40 के लिए)। Problem Figure / प्रश्न आकृति Which one of the answer figures shows the correct view of the 3-D problem figure after the problem figure is opened up ? 3-D प्रश्न आकृति को खोलने पर, उत्तर आकृतियों में से सही दृश्य कौन सा है ? Answer Figures / उत्तर आकृतियाँ

Answer Figures / उत्तर आकृतियाँ

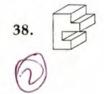
5

2

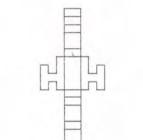

G


(1)

(1)


Ъ

(1)



(4)

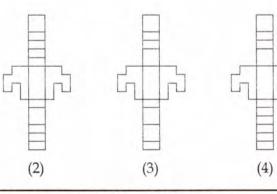
39.

40.

(2)

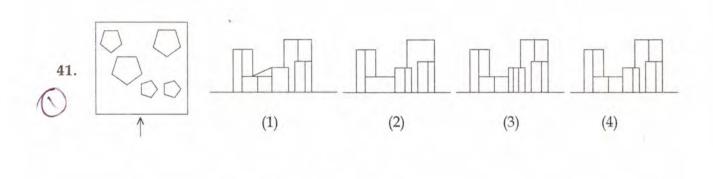
(2)

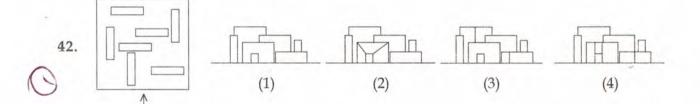

5

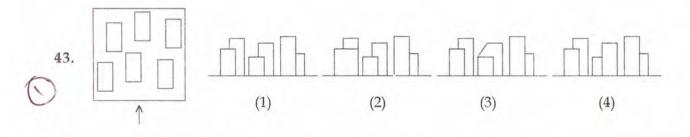

5

(3)

5


Directions : (For Q. 41 to 43).

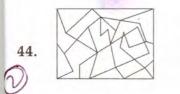

The problem figure shows the top view of objects. Looking in the direction of the arrow, identify the correct elevation, from amongst the answer figures.


निर्देश : (प्र. 41 से 43 के लिए)।

प्रश्न आकृति में वस्तुओं का ऊपरी दृश्य दिखाया गया है। तीर की दिशा में देखते हुए उत्तर आकृतियों में से सही सम्मुख दृश्य पहचानिये।

Problem Figure / प्रश्न आकृति Answer Figures / उत्तर आकृतियाँ

Directions : (For Q. 44 to 46).


One of the following answer figures is hidden in the problem figure in the same size and direction. Select the correct one.

निर्देश : (प्र. 44 से 46 के लिए)।

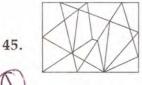
नीचे दी गयी उत्तर आकृतियों में से एक आकृति माप और दिशा में समान रूप से प्रश्न आकृति में छुपी है। कौन सी सही है, चुनिए।

Problem Figure / प्रश्न आकृति

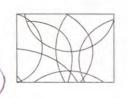
Answer Figures / उत्तर आकृतियाँ

(1)

(2)


(3)

(3)



(4)

(4)

 $(1) \qquad (2) \qquad (3)$

(2)

T/Page 13

46

Directions : (For Q. 47 to 50).

Which one of the answer figure will complete the sequence of the three problem figures ?

निर्देश : (प्र. 47 से 50 के लिए)।

उत्तर आकृतियों में से कौन-सी आकृति को तीन प्रश्न आकृतियों में लगाने से अनुक्रम (sequence) पूरा हो जायेगा ?

Problem Figures / प्रश्न आकृतियाँ Answer Figures / उत्तर आकृतियाँ 47. (1)(2)(3)(4)48. (1) (3)(2)(4)(1) (3) (4)(2)50. (4)(1)(3)(2)

Part II / भाग II Mathematics / गणित

- Let PQ be a focal chord of the parabola 51. $y^2 = 4x$. If the centre of a circle having PQ as its diameter lies on the line $\sqrt{5}y + 4 = 0$, then the length of the chord PQ is :
 - (1) $\frac{26}{5}$
 - $\frac{36\sqrt{5}}{5}$ (2)
 - $\frac{26\sqrt{5}}{5}$ (3)
 - $\frac{36}{5}$ (4)
- **52.** यदि $\int \frac{dx}{x^3 (1+x^6)^{2/3}} = f(x) (1+x^{-6})^{1/3} + C$ 52. If $\int \frac{dx}{x^3(1+x^6)^{2/3}} = f(x)(1+x^{-6})^{1/3} + C$, है, जहाँ C समाकलन अचर है, तो f(x) बराबर है : where C is a constant of integration, then f(x) is equal to : $1 + \frac{1}{76} = \epsilon$. (1) $-\frac{1}{6}$ (1) $-\frac{1}{6}$ $\frac{\delta}{-\gamma^2} = dt$ (2) $-\frac{6}{x}$ (2) $-\frac{6}{r}$ $-\frac{1}{6}\left(\frac{dx}{t^{2}/a}\right)$ (3) $-\frac{x}{2}$ 3-1-£ (3) $-\frac{x}{2}$ (4) $-\frac{1}{2}$ (4) $-\frac{1}{2}$

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

51. माना PQ परवलय $y^2 = 4x$ की एक नाभि जीवा है। यदि PQ व्यास वाले वृत्त का केंद्र रेखा $\sqrt{5}y + 4 = 0$ पर स्थित है, तो जीवा PQ की लंबाई है :

(1)
$$\frac{26}{5}$$

(2) $\frac{36\sqrt{5}}{5}$

(3)
$$\frac{26\sqrt{5}}{5}$$

4)
$$\frac{36}{5}$$

T/Page 15

L

tof

53.	The	sum	of	the	series

 \sum . श्रेणी $S = \frac{1}{19!} + \frac{1}{3!17!} + \frac{1}{5!15!} + \dots 10$ पदों तक

220

 $S = \frac{1}{19!} + \frac{1}{3!17!} + \frac{1}{5!15!} + \dots$ to 10 terms is का योग S, बराबर है : equal to : 220

(1)	20!	(1)	20!
(2)	$\frac{2^{10}}{20!}$	(2)	$\frac{2^{10}}{20!}$
(3)	$\frac{2^{19}}{19!}$	(3)	$\frac{2^{19}}{19!}$
(4)	$\frac{2^{19}}{20!}$	(4)	$\frac{2^{19}}{20!}$

The solution of the differential equation 54.

$$\frac{y\,dx + x\,dy}{y\,dx - x\,dy} = \frac{x^2 e^{xy}}{y^4},$$

satisfying $y(0) = 1$, is :

(1)
$$x^3 = 3y^3 \left(1 - e^{-xy}\right)$$

(2)
$$x^3 = 3y^3(-1+e^{xy})$$

(3)
$$x^3 = 3y^3(1 - e^{xy})$$

(4)
$$x^{3} = 3y^{3}(-1 + e^{-xy})$$

If the system of linear equations : 55. x + 3y + 7z = 02 $(\sin 3\theta)x + (\cos 2\theta)y + 2z = 0$

> has a non-trivial solution, then the number of values of θ lying in the interval $[0, \pi]$, is :

- (1)two
- (2)three
- (3)more than three
- (4)one

T/Page 16

अवकल समीकरण $\frac{ydx + xdy}{ydx - xdy} = \frac{x^2 e^{xy}}{y^4}$ 54.

का 1/(0) = 1 को संतुष्ट करता हुआ हल है :

(1) $x^3 = 3y^3(1 - e^{-xy})$ (2) $x^3 = 3y^3(-1 + e^{xy})$ (3) $x^3 = 3y^3(1 - e^{xy})$ (4) $x^3 = 3y^3 (-1 + e^{-xy})$

यदि रैखिक समीकरण निकाय 55. x + 3y + 7z = 01 -x + 4y + 7z = 0 $(\sin 3\theta)x + (\cos 2\theta)y + 2z = 0$ का एक अतुच्छ हल है, तो अंतराल [0, 7] में पड़ने वाले म के मानों की संख्या है : दो (1)तीन (2)तीन से अधिक (3)

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

1(8-7(0)20)+1(6+7(0)20)+ SIM30(21-28)20 0-0 14-14 Cor 20 + 751m30 =0 2-200120 + Sim 30 20 200920+51m30=2

प्रसार में गुणांकों का माध्य 16 है, तो n बराबर है : binomial coefficients in the expansion of $(a+b)^{2n-3}$ is 16, then *n* is equal to : (1) 5 5 (1)7 (2)(2)7 (3)9 (3)9 (4)4 (4)4 $A \rightarrow (A \lor \sim B)$ का निषेध : The negation of $A \rightarrow (A \lor \sim B)$ is : 57. 57. 2 एक पुनरुक्ति है। (1)(1)a tautology (2) (A∨~B)→A के समतुल्य है। (2)equivalent to $(A \lor \neg B) \rightarrow A$ $A \rightarrow (A \wedge \sim B)$ के समतुल्य है। (3)equivalent to $A \rightarrow (A \land \neg B)$ (3) एक कतर्क है। (4)a fallacy (4)एक अतिपरवलय की नाभियां एक दीर्घवृत्त The foci of a hyperbola coincide with the 58. 58. $\left(\bigvee \frac{x^2}{25} + \frac{y^2}{9} = 1 \right)$ की नाभियों के सम्पाती है। यदि foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. If the अतिपरवलय की उत्केंद्रता 2 है, तो इस अतिपरवलय eccentricity of the hyperbola is 2, then the की बिंदु (4,6) से गुजरने वाली स्पर्श रेखा का समीकरण equation of the tangent to this hyperbola 言: passing through the point (4, 6) is : a=5 b= 3 e=11-9 25 3x - 2y = 0(1)3x - 2y = 0(1)16 4/4 2x - 3y + 10 = 0(2)2x - 3y + 10 = 0(2)CEYK x - 2y + 8 = 0x - 2y + 8 = 0(3)(3)X.2, - 4.4, 12 - 4.2 =2. 2x - y - 2 = 0(4) 2x - y - 2 = 0(4)SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह T/Page 17 e=2 2= 1+ ac F T T T T F $q = \frac{q}{r_3}$ F F T

56.

For a positive integer *n*, if the mean of the

56.

एक धनपूर्णांक n के लिए, द्विपद $(a+b)^{2n-3}$ के

4x-184=4 97-04=1

59.	From a point A with position vector	59. बिंदु A जिसका स्थिति सदिश $p(\hat{i} + \hat{j} + \hat{k})$ है,
	$p(\hat{i} + \hat{j} + \hat{k})$, AB and AC are drawn	से <i>AB</i> तथा <i>AC</i> क्रमश: रेखाओं $\vec{r} = \hat{k} + \lambda \begin{pmatrix} \uparrow & \uparrow \\ i + j \end{pmatrix}$
	perpendicular to the lines $\vec{r} = \hat{k} + \lambda (\hat{i} + \hat{j})$	तथा $\vec{r} = -\hat{k} + \mu \begin{pmatrix} \hat{i} & \hat{j} \end{pmatrix}$ के लंबवत खींची
	and $\overrightarrow{r} = - \hat{k} + \mu (\hat{i} - \hat{j})$, respectively.	गई हैं। p का एक मान बराबर है :
	A value of p is equal to :	
	(1) -1	(1) - 1
	(2) $\sqrt{2}$	(2) $\sqrt{2}$
	(3) 2	(3) 2
	(4) -2	(4) - 2
60.	If for a matrix A, $ A = 6$ and	60. यदि आव्यूह A के लिए, A =6 तथा
	$\begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$	$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 4 \end{bmatrix}$
	adj A = $\begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{bmatrix}$, then <i>k</i> is equal to :	$ \begin{array}{c} 3 \\ adj \ A = \begin{bmatrix} 1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0 \end{bmatrix} \\ \hline \begin{tabular}{l} \begin{tabular}{l} \hline \end{tabular} \\ \hline \end{tabular} $
	(1) 0 $I(-K) = 4(-4K) - 1(-2-4)$	
		(1) 0
	(2) $1 - K + 16K + 6 = 36$ (3) $2 - 15K = 30$	(2) 1 * (3) 2
		(3) = 2 (4) -1
	$(4) -1 \qquad $	
61.	A box contains 5 black and 4 white balls.	61. एक बक्से में 5 काली तथा 4 सफेद गेंदें हैं। इसमें से
	A ball is drawn at random and its colour	() यादृच्छया एक गेंद निकाली गई तथा इसका रंग नोट
	is noted. The ball is then put back in the	किया गया। इस गेंद को, इससे विपरीत रंग की 2
	box along with two additional balls of its opposite colour. If a ball is drawn again	अतिरिक्त गेंदों के साथ बक्से में वापिस डाल दिया गया। अब यदि बक्से में से एक गेंद निकाली गई, तो
	from the box, then the probability that the	उसके काले रंग की होने की प्रायिकता है :
	ball drawn now is black, is :	
	(1) 5	(1) 5
	(1) 11	(1) $\frac{1}{11}$
	(2) $\frac{53}{99}$	(2) $\frac{53}{99}$
	(3) $\frac{48}{99}$	(3) $\frac{48}{99}$
	(4) $\frac{7}{11}$	(4) $\frac{7}{11}$

62.	If $\sum_{i=1}^{n} \left(\frac{{}^{n}C_{i-1}}{{}^{n}C_{i} + {}^{n}C_{i-1}} \right)^{3} = \frac{36}{13}$, then <i>n</i> is equal to:	62. यदि $\sum_{i=1}^{n} \left(\frac{{}^{n}C_{i-1}}{{}^{n}C_{i} + {}^{n}C_{i-1}} \right)^{3} = \frac{36}{13}$ है, तो <i>n</i> बराबर है :
	equal to .	ę.
	(1) 11	(1) 11
	(2) 12	(2) 12
	(3) 13	(3) 13
	(4) 10	(4) 10

A code word of length 4 consists of two 63. distinct consonants in the English alphabet followed by two digits from 1 to 9, with repetition allowed in digits. If the number of code words so formed ending with an even digit is 432 k, then k is equal to :

> (1)5

(2)49

- (3)35
- (4)7

 $\lim_{x \to 1} ((1 - x) + [x - 1] + |1 - x|), \text{ where }$ 64. [x] denotes the greatest integer less than or equal to x: (1-2) + |1-2|(1-2) + (1-2)

is equal to 0 (1)

is equal to 1 (2)

- does not exist (3)
- (4)is equal to -1

T/Page 19

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

2-22

- लंबाई 4 वाले एक कुटशब्द में अंग्रेजी शब्दकोष के दो 63. विभिन्न व्यंजन हैं तथा उनके बाद 1 से 9 तक में से दो अंक है जिनमें पुनरावृत्ति हो सकती है। यदि इस प्रकार बने कूटशब्द जिनका अंतिम अंक सम है, की संख्या 432 k है, तो k बराबर है :
 - (1)5
 - 49 (2)
 - (3)35
 - (4)7

 $\lim_{x \to \infty} ((1 - x) + [x - 1] + |1 - x|), \operatorname{set}[x],$ 64. (1) x के बराबर या उससे कम महत्तम पूर्णांक को निर्दिष्ट करता है :

> (1) 0 के बराबर है। (1-x) #x-1 0 (2) 1 के बराबर है। का अस्तित्व नहीं है। (3)

	is: (1) $\frac{20}{19}$		$(1) \frac{20}{2}$
	19		(1) $\frac{20}{19}$ (2) $\frac{19}{21}$ (3) $\frac{21}{19}$
			(2) 21
	(3) $\frac{21}{19}$		(3) $\frac{21}{19}$
	(4) $\frac{19}{20}$		(4) $\frac{19}{20}$
66.	The abscissa of a point, tangent at which to the curve $y = e^x \sin x$, $x \in [0, \pi]$, has maximum slope, is :	66. ()	उस बिंदु का भुज, जिस पर वक्र y=e ^x sinx, xε[0, π] की स्पर्श रेखा की ढाल अधिकतम है, है :
	(1) $\frac{\pi}{4}$ $e^{\chi}_{\text{Sim} + e^{\chi}_{\text{Colne}} = 0}$ $e^{\chi}_{\text{Sim} + conjee}$ π $\chi_{\pm} n_{ij}$		(1) $\frac{\pi}{4}$
	(2) $\frac{\pi}{2}$ $\pi \pm n_{ig}$		(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{2}$
	(3) π		(3) π
	(4) 0		(4) 0
67.	The integral $\int_{0}^{2} [x^{2}] dx$ ([<i>t</i>] denotes the greatest integer less than or equal to <i>t</i>) is equal to :	67.	समाकल $\int_{0}^{2} [x^2] dx$, (जहाँ [t], t से कम या t के बराबर महत्तम पूर्णांक को निर्दिष्ट करता है) बराबर है:
	(1) $5 - 2\sqrt{3}$		(1) $5 - 2\sqrt{3}$
	(2) $5 - \sqrt{2} - \sqrt{3}$		(2) $5 - \sqrt{2} - \sqrt{3}$
	(3) $6 - \sqrt{2} - \sqrt{3}$		(3) $6 - \sqrt{2} - \sqrt{3}$
	(4) $3 - \sqrt{2}$		(4) $3-\sqrt{2}$

- 68. Two vertices of a triangle are (3, -2) and (-2, 3), and its orthocentre is (-6, 1). Then the third vertex of this triangle can NOT lie on the line :
 - $(1) \quad 4x + y = 2$
 - $(2) \quad 5x+y=2$
 - $(3) \quad 3x+y=3$
 - $(4) \quad 6x+y=0$
- 69. Let p(x) be a real polynomial of degree 4 having extreme values at x = 1 and x = 2. If $\lim_{x\to 0} \frac{p(x)}{r^2} = 1$, then p(4) is equal to :
 - (1) 16
 - (2) 32
 - (3) 64
 - (4) 8
- 70. The plane through the intersection of the planes x + y + z = 1 and 2x + 3y z + 4 = 0 and parallel to *y*-axis, also passes through the point :
 - (1) (3, 0, 1)
 - (2) (-3, 0, 1)
 - (3) (3, 0, -1)
 - (4) (-3, 0, -1)

- यदि एक त्रिभुज के दो शीर्ष (3, -2) तथा (-2, 3)हैं तथा इसका लंबकेंद्र (-6, 1) है, तो त्रिभुज का तीसरा शीर्ष जिस रेखा पर स्थित नहीं हो सकता वह है:
 - (1) 4x + y = 2
 - $(2) \quad 5x+y=2$
 - $(3) \quad 3x + y = 3$
 - $(4) \quad 6x+y=0$
- **69.** माना p(x), घात 4 का एक वास्तविक बहुपद है जिसके चरम मान x = 1 तथा x = 2 पर हैं। यदि $\lim_{x \to 0} \frac{p(x)}{x^2} = 1$ है, तो p(4) बराबर है :
 - (1) 16
 - (2) 32
 - (3) 64
 - (4) 8

70.

1

समतलों x + y + z = 1 तथा 2x + 3y - z + 4 = 0के प्रतिच्छेदन से होकर जाने वाला समतल, जो y-अक्ष के समांतर है, जिस बिंदु से भी गुज़रता है, वह है:

- (1) (3, 0, 1)
- (2) (-3, 0, 1)
- (3) (3, 0, -1)
- (4) (-3, 0, -1)

T/Page 21

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

.

71.	A line passing through the point $P(1, 2)$ meets the line $x+y=7$ at the distance of 3 units from P . Then the slope of this line satisfies the equation :	
	(1) $7x^2 - 18x + 7 = 0$	(1) $7x^2 - 18x + 7 = 0$
	(2) $16x^2 - 39x + 16 = 0$	(2) $16x^2 - 39x + 16 = 0$
÷	$(3) 7x^2 - 6x - 7 = 0$	$(3) 7x^2 - 6x - 7 = 0$
	$(4) 8x^2 - 9x + 1 = 0$	$(4) 8x^2 - 9x + 1 = 0$
72.	Let a , b , c , d and e be distinct positive	
	numbers. If <i>a</i> , <i>b</i> , <i>c</i> and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ both are	
	in A.P. and b , c , d are in G.P. then :	b, c, d गुणोत्तर श्रेढ़ी में हैं, तो :
	(1) <i>a, b, e</i> are in G.P.	(1) a, b, e गुणोत्तर श्रेढ़ी में हैं।
	(2) <i>a, b, e</i> are in A.P.	(2) a, b, e समांतर श्रेढ़ी में हैं।
	(3) <i>a, c, e</i> are in A.P.	(3) a, c, e समांतर श्रेढ़ी में हैं।
	(4) <i>a, c, e</i> are in G.P.	(4) a, c, e गुणोत्तर श्रेढ़ी में हैं।

73.	If the	e line $x = a$ bisects the area under the	73.	यदि	रेखा $x = a$, वक्र $y = \frac{1}{r^2}, 1 \le x \le 9$ के
	curv	e $y = \frac{1}{r^2}, 1 \le x \le 9$, then 'a' is equal			के क्षेत्रफल का समद्विभाजन करती है, तो 'a'
	to :	A		बराब	र है :
	(1)	<u>9</u> 5		(1)	$\frac{9}{5}$
	(2)	$\frac{5}{9}$		(2)	$\frac{5}{9}$
	(3)	$\frac{9}{4}$		(3)	$\frac{9}{4}$
	(4)	$\frac{4}{9}$		(4)	$\frac{4}{9}$
74.	The	$S = \{z \in \mathbb{C} : z(iz_1 - 1) = z_1 + 1, z_1 \le 1\}.$ n, for all $z \in S$, which one of the wing is always true ?	74.	है, तो	$S = \{z \in \mathbb{C} : z(iz_1 - 1) = z_1 + 1, z_1 < 1\}$ सभी $z \in S$ के लिए निम्न में से कौन सा एक सत्य है?
	(1)	Re $z + \text{Im } z < 0$		(1)	$\operatorname{Re} z + \operatorname{Im} z < 0$
	(2)	Re <i>z</i> < 0		(2)	Re <i>z</i> < 0
	(3)	Re $z - \text{Im } z > -1$		(3)	Re $z - \text{Im } z > -1$
	(4)	Re $z - \text{Im } z < 0$		(4)	Re $z - \operatorname{Im} z < 0$

75.	If <i>f</i> is a function of real variable <i>x</i> satisfying $f(x+4) - f(x+2) + f(x) = 0$, then <i>f</i> is a periodic function with period :	75.	यदि f एक वास्तविक चर x का फलन है जो कि f(x+4)-f(x+2)+f(x)=0 को संतुष्ट करता है, तो f एक आवर्ती फलन है जिसका आवर्त-काल है :
	(1) 8		(1) 8
	(2) 10		(2) 10
	(3) 12		(3) 12
	(4) 6		(4) 6
76.	For all values of $\theta \in \left(0, \frac{\pi}{2}\right)$,	76.	$ heta \in \left(0, rac{\pi}{2} ight)$ के सभी मानों के लिए आव्यूह
	the determinant of the matrix		$\begin{bmatrix} -2 & \tan\theta + \sec^2\theta & 3 \end{bmatrix}$
	$\begin{bmatrix} -2 & \tan\theta + \sec^2\theta & 3 \end{bmatrix}$		$\begin{bmatrix} -2 & \tan\theta + \sec^2\theta & 3 \\ -\sin\theta & \cos\theta & \sin\theta \\ -3 & -4 & 3 \end{bmatrix}$
	$\begin{bmatrix} -2 & \tan\theta + \sec^2\theta & 3 \\ -\sin\theta & \cos\theta & \sin\theta \\ -3 & -4 & 3 \end{bmatrix}$		L
	always lies in the interval :		का सारणिक हमेशा जिस अंतराल में स्थित है, वह है :
	(1) [3, 5]		(1) [3, 5]
	(1) $[0, 5](2)$ $(4, 6)$		(2) (4, 6)
	$(3) \left(\frac{5}{2}, \frac{19}{4}\right)$		$(3) \left(\frac{5}{2}, \frac{19}{4}\right)$
	$(4) \left[\frac{7}{2}, \frac{21}{4}\right]$		(4) $\left[\frac{7}{2}, \frac{21}{4}\right]$
77	$\int u(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 23 & 17 & 13 \end{vmatrix}$	77	$\frac{ \sin x \cos x \sin x + \cos x + 1 }{23}$
11.	If $y(x) = \begin{vmatrix} 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}$,		$\overline{\mathrm{afg}} \ y(x) = \begin{vmatrix} 511x & cosx & s11x + cosx + 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix},$
	$x \in \mathbf{R}$, then $\frac{d^2y}{dx^2} + y$ is equal to :		$x \in \mathbf{R}$ है, तो $\frac{d^2 y}{dx^2} + y$ बराबर है :
	(1) 4		(1) 4
	(2) -10		(2) -10
	(3) 0		(3) 0
	(4) 6		(4) 6

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

78.	The number of integral values of m for which the equation,	78. <i>m</i> के उन पूर्णांकीय मानों की संख्या, जिनवे लिए समीकरण
	$(1+m^2) x^2 - 2(1+3m)x + (1+8m) = 0$, has no real root, is :	(1 + m ²) x ² - 2(1 + 3m)x + (1 + 8m) = 0 क कोई वास्तविक मूल नहीं है, है :
	(1) 2	(1) 2
	(2) 3	(2) 3
	(3) infinitely many	(3) अनन्त
	(4) 1	(4) 1
79.	For all d , $0 < d < 1$, which one of the following points is the reflection of the point $(d, 2d, 3d)$ in the plane passing through the points $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$?	79. सभी d, 0 <d<1 के="" कौन="" निम्न="" बिंट<br="" में="" लिए,="" सा="" से="">बिंदु (d, 2d, 3d) का बिंदुओं (1, 0, 0), (0, 1, 0 तथा (0, 0, 1) से होकर जाने वाले समतल में प्रतिबिं है?</d<1>
	(1) $\left(-\frac{1}{3}+3d, 2d, \frac{1}{3}+d\right)$	(1) $\left(-\frac{1}{3}+3d, 2d, \frac{1}{3}+d\right)$
	(2) $(3d, 2d, d)$	(2) $(3d, 2d, d)$
	(3) $\left(\frac{1}{3}+d, \frac{2}{3}-2d, -\frac{1}{3}+d\right)$	(3) $\left(\frac{1}{3}+d, \frac{2}{3}-2d, -\frac{1}{3}+d\right)$
	(4) $\left(\frac{2}{3}-3d,\frac{2}{3}-2d,\frac{2}{3}-d\right)$	(4) $\left(\frac{2}{3} - 3d, \frac{2}{3} - 2d, \frac{2}{3} - d\right)$

80. If the function
$$f : [1, ∞ [→ [1, ∞ [is defined by $f(x) = 3^{x(x-1)}$; then $f^{-1}(x)$ is :
(1) $\frac{1}{2}(1 - \sqrt{1 + 4 \log_3 x})$
(2) $\frac{1}{2}(1 + \sqrt{1 + 4 \log_3 x})$
(3) not defined
(4) $(\frac{1}{3})^{x(x-1)}$
- o O o -
- o O o -
80. यदि फलन $f : [1, ∞ [→ [1, ∞ [इस प्रकार uterates the strength of the strength$$$

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह $Y = 3^{\chi(\chi-1)}$